How can Big Data impact Land Reclamation?

How can Big Data impact Land Reclamation?

Toby Kraft, Founder and CEO of SolSpec, spoke about “Playing Offense and Being Industry Advocates” at the May 19, 2019 Summit for Reclamation and Construction. The annual Summit, hosted by Huwa Enterprises in Keenesburg, Colorado, is a unique conference where professionals come together to learn, share, and network with industry experts dedicated to protecting the environment.

“So as all good millennials do, I wake up every single day and spend every waking hour engaging with some social media platform,” Kraft opened, introducing the value of big data by drawing a common big data comparison with the advertising world. Social media platforms store extensive information related to their users’ interests, and the massive amount of data generated by millions of users drives much of the backbone of modern marketing.

Why let retail be the main industry that capitalizes on big data? Why aren’t the construction and reclamation and energy industries taking advantage of big data for their projects? These are the questions at the core of Toby’s presentation. Collecting data and providing information from past and current projects can build benefits for all – we can learn from the mistakes others have made and drive future success. “A lot of you are probably thinking ‘Yeah, okay, that sounds utopian,” quipped Kraft.

Big data can empower decision makers in the construction, energy, and reclamation industries and result in safer, more successful projects. But success can only come from working together to improve our industries’ practices. Kraft called on his colleagues at the Summit to remember that “our neighbor’s failure or our competitor’s failure is our failure.” Collaborating and building databases of geographic information doesn’t weaken your company or strengthen the opposition. Uniting our data and sharing information is the approach that will keep our industries strong, because without it our future work is threatened.

Kraft’s vision with SolSpec is not just to identify hazards that already exist. Combining data gathered regarding surface hydrology, soil information, geologic details, and the massive stores of siloed data that runs across the industry and third parties makes it possible to predict future hazards. A prioritized list of current and potential hazards empowers decision makers to prioritize mitigation efforts and resources, and do better work for long-term success and improved community relations.

Diving into real-life scenarios, Kraft highlighted for the audience the value and impact of data-driven solutions in land reclamation and construction. One example was Appalachia, one of the richest areas in natural gas in North America. Recent construction of infrastructure, more in the last five years than in the previous fifty, has resulted in loss of vegetation in deciduous forests. These forests and unconsolidated soils cover the characteristic steep slopes of the region. Big rainstorms in this context can cause mass soil movement and landslides, which compromise local pipelines and assets. Compromised pipeline and right-of-way integrity cause undue risk, environmental damage, and financial loss.

Another example Kraft discussed was California, which is dealing with increased threats from fires. Last year’s Camp Fire burned 150,000 acres, destroyed the city of Paradise, and killed 46 people. The likely cause of the fire was a spark from a utility asset that caught the vegetation near the asset. Data gathered from flyovers and processed with analytics can reveal vegetation encroachment. That information can help direct fire prevention efforts around existing utilities and stop a destructive disaster.

“What could the headlines look like a year from now if we all come together around these issues and we get ahead of it and we play offense? What could the future look like?” asked Kraft. Fewer disasters, increased efficiency, prioritized use of resources, and improved reputations for our industries. To learn more about how Kraft and the team at SolSpec are taking our industries to the cutting edge, go to

If you’re interested in attending, sponsoring, or exhibiting at the 2020 Summit, go to for more information.

Why Risk Indexing Is Vital in Prioritizing ROW Hazard Tasks

Why Risk Indexing Is Vital in Prioritizing ROW Hazard Tasks

Companies understand that any right-of-way project requires accurate risk indexing. They devote a massive amount of resources to index the risks before, during, and after each project. But why is risk indexing so vital?

Risk indexing is vital in prioritizing ROW hazard tasks. It helps planners to identify the likelihood of hazards and the potential impact these hazards can have on both the right-of-way and surrounding areas. This enables planners to allocate resources to where they’re needed most.

What is Risk Indexing

Before discussing its importance, we must explain what risk indexing is. Risk indexing is the identification and prioritization of potential hazards and risks to a ROW. This is important because risks with a higher likelihood of occurrence require more time, attention, and resources. This can’t happen if right-of-way managers are unaware of potential risks.

Added risks could include safety hazards, financial hazards, environmental hazards, and even legal hazards. They may also include risks the right-of-way could pose to the local area.

ROW managers, for example, need to be aware of environmentally sensitive areas to reduce the impact of a right-of-way. They are known as EGHCA class areas and are EPA regulated and monitored.

Once these risks are identified and added to the index, they’ll be categorized and scored so that each hazard can be appropriately prioritized. There isn’t a one-size-fits-all method for indexing risk, so some ROW management teams may categorize risks differently than others. But, they all have the same end goal of identifying potential risks and determining which risks need more resources and which don’t.

What Are ROW Hazards and Right-of-Way Hazard Tasks

Right-Of-Way hazards can include:

  • Safety Hazards
  • Financial Hazards
  • Environmental Hazards
  • Legal Hazards

Right-of-way Safety Hazards

Safety hazards can be as simple as new workers slipping and falling on the right-of-way during construction. In fact, Supreme Industries did an investigation and found that 70% of the slip, trip, and fall injuries occurred to employees who had been with the company for less than 6 months. Armed with this information, the company was able to design a training program that dropped these slip, trip, and fall injuries down to zero.

Using analytics, we can assess where there is potential for geohazard activity, like a landslide.

Another example of a safety hazard is that certain roadside rights-of-way might be more dangerous than others. ROW planners could mitigate this risk by installing additional physical barriers that would ensure the safety of the workers as well as the right-of-way itself.

Environmental Hazards

Different ROWs may be subjected to various environmental hazards as well. For example, a right-of-way near the mountains of Colorado might be vulnerable to avalanches while a ROW in Florida might have to worry about hurricanes or flooding.

While the environment may put the ROW at risk, the right-of-way could also potentially endanger the environment. Rights-of-way in or around areas with at-risk habitats will need to take steps to ensure that they have no adverse effects on these areas. Risk indexing helps to identify these locations along the ROW.

Legal Hazards

A long pipeline project could have a right-of-way that stretches for many miles. Midstream pipeline builders and operators will have to work with local governments, private property owners and the Pipeline and Hazardous Materials Safety Administration to establish agreements to operate in certain areas.

Sometimes, even after starting a project, legal issues may arise around these agreements. Different states and localities may have different laws on how these issues are resolved, making legal problems riskier in some areas of the country than others.

Slip/Slope Failure

For most right-of-way projects, the most substantial hazard could be slope failure. This is especially true with pipelines. The reason for this is that pipelines typically run over long distances and will almost always run near mountainous terrain where landslides are likely to develop.

A slope failure will result in a landslide that could endanger the safety of builders, pipeline operators, the surrounding areas, and the actual pipeline itself. Compromised slopes can lead to mud slipping down into sensitive areas of the pipeline. According to the U.S. Geological Survey, landslides have damaged millions of cubic meters of pipelines.

Financial Hazards of ROWs

Improper risk prioritization, or lack thereof, can lead to costly financial repercussions. Many ROW hazards that may have previously been restored quickly with the help of risk indexing might well end up costing exponentially more later on. Catching issues sooner, rather than later, is a priority for any company. It can often save a considerable amount of time and money in the forms of preventable labor, legal, environmental, and other costs.

For example, slope failures can lead to landslides and, as a result, cause massive damage to pipelines, ROWs, and surrounding areas and is almost always costly. If residences or environmentally sensitive areas are affected as well, the total end cost will rise, and legal troubles could ensue. Preventing these incidents with proper risk indexing enables appropriate resource and labor allocation and can be vastly more economical than paying for cleanup, restoration, and restitution after the fact.

Why Is Risk Indexing Vital

Keeping workers safe is vital to any pipeline project. Risk indexing can let project managers know where the most immediate danger lies within the ROW, so they can focus on improving safety in these areas.

Protecting the surrounding environment. Risk indexing can also help right-of-way planners determine which habitats are most affected by pipeline construction and maintenance. These areas can then have more resources allocated to them to help mitigate any potential damage to the local environment.

Profits can also be increased by proper risk indexing. That’s because risk indexing ensures money goes to the areas that need it most. It also minimizes escalation of costs caused by delayed maintenance.

It also helps to keep pipeline construction on schedule. This is because it helps predict potential problems that may otherwise have shut down pipeline activities.

How Is Risk Indexing Accomplished

The book, Risk Assessment in Setting National Priorities, states that “to be cost-effective, a prioritization system must be simple, rapid, and accurate.” For this reason, many companies use UAVs designed to map and monitor a ROWs geography. To demonstrate the risk indexing process, let’s look at how a UAV company could create a risk index for landslips along a pipeline project.

Landslips Along Pipelines

A UAV monitoring company might start the process by creating a baseline map to identify and eliminate any immediate concerns. The UAV could locate several slopes to be rebuilt along a ROW. Slope repair contractors could move in and restore the slope before even starting construction in a right-of-way. The slopes deemed to be the greatest danger are rated higher so work can start on them first.

UAVs will then be used to monitor the ROW continuously, looking out for actual slip movement and to create predictive assessments. Moving slopes and those that could pose a greater hazard to sensitive areas will be moved up the risk index. Upon completion, UAVs can be used to evaluate the effectiveness of the remediation efforts.

Environmentally Sensitive Areas

UAV monitoring not only protects the pipeline but also protects environmentally sensitive areas. For example, UAV monitoring can be used to create a two-tiered analysis to monitor what happens to the ground and its potential environmental risk. This type of monitoring is especially critical in areas running through or around at-risk habitats.

Monitoring the surface hydrology through UAV imagery and analytics can protect environmentally sensitive areas

Monitoring an area using UAVs will help the pipeline to comply with EPA regulations and any other governing bodies concerned with the potential impacts of the ROW and pipeline. Doing so will also help to keep the company in good standing with the public. This is critical as a poor public image could impede the construction of new projects in the future. Conversely, a positive public image could make it easier and faster for the company to obtain the approvals it needs to create new projects.

In these cases, heat maps are usually created to allow right-of-way managers to see, at a glance, which areas should take top priority and receive the most resources. Commonly the color coding system uses dark red to denote areas that are most at risk.

Final Thoughts

Risk indexing is a complex process that involves many different areas of a ROW. With the help of specialized knowledge and expertise, as well as the latest in UAV technology, this process can be simple, cost-effective, and accurate.

Solspec is serious about risk indexing. We know that keeping pipeline projects on time, keeping workers safe, and reducing the environmental impact are all critical to your project’s success. We are proud to have some of the fastest data turnaround times in the industry. To find out how Solspec can help you with hazard identification, indexing, and more, check out our ROW integrity management page.

Aerial Analytics: LiDAR vs. Photogrammetry

Aerial Analytics: LiDAR vs. Photogrammetry

Two of the best land survey methods are LiDAR and photogrammetry. These survey methods can collect more data in a shorter timeframe than any other survey methods.

But what is better, LiDAR or photogrammetry? Before we can answer this question, we have to talk about what LiDAR and photogrammetry really are; and their similarities and differences.

In the next few sections, we will go over what LiDAR and photogrammetry are and how they are used to collect data. We will also address their practical use in the field, as well as the cases in which one might be better than the other.

What is LiDAR?

The acronym LiDAR stands for “light detection and ranging.” Simply put, LiDAR is a laser beam-based technology that uses laser light to help create maps. A laser beam and a sensor are used in conjunction to determine where objects are in relation to the sensor as well as each other.

These LiDAR point clouds are a collection of points that represent a 3D shape or feature

This technology can be mounted on ground-based devices, airplanes, helicopters, satellites, and UAVs. LiDAR use on UAVs is increasingly popular as it is less expensive than using aircraft and satellites, and faster and more efficient than using ground-based tools.

LiDAR system components

Lidar consists of four main components.
The vehicle on which the LiDAR system is mounted, such as a plane, UAV, satellite, or ground based system. This will have the LiDAR unit mounted to it. This is the device that contains the sensor and the laser.

A GPS receiver is also located on the device. This receiver is used to determine not only the latitude and longitude of the objects that are scanned but the altitude as well.

An inertial measurement unit helps to improve GPS receiver accuracy. The unit determines the angle of the vehicle. For example, the inertial measurement unit will keep track of the angle of the plane as it flies over the targeted area.

A computer is used to record all of this data. It records the burst of light that is sent out from the LiDAR system as well as the reflected light energy that is recorded from the LiDAR system. The time that it takes for the light energy to get from the object back to the LiDAR system is used to determine distances and altitudes.

What is LiDAR Used For?

LiDAR technology is used by many different industries and government agencies. It can be used to help predict the weather, create topographic maps, survey water bodies, and even create autonomous vehicle navigation systems.
An example of LiDAR data in use is the NOAA using it to monitor coastlines. This LiDAR data has been made public and is available here.

Another example might be the use of LiDAR data to create a pipeline corridor map. LiDAR data use, in this instance, would help the pipeline company access the terrain to plan construction and maintenance work.
photogrammetry image
This is an example of a photogrammetry output.

What is Photogrammetry?

Photogrammetry uses cameras to create photographs that can be used to create measurements. In essence, it takes 2D photographs and converts them into 3D models.

Like LiDAR, a photogrammetry system can be mounted on ground-based devices, planes, helicopters, satellites, and UAVs. Also, as with LiDAR, UAVs are becoming popular vehicles for photogrammetry systems.

Photogrammetry systems components

A photogrammetry system consists of a few essential parts, they are:

The vehicle to which the photogrammetry system is mounted. A satellite, UAV, helicopter, plane, or ground-based vehicle can be used to carry a photogrammetry system. The vehicle used to carry the system can be as simple as a person with a tripod or as advanced as a satellite in Earth’s orbit. But, nowadays, the most common vehicle for a photogrammetry system is a UAV.

The camera will take photographs from different angles.

The GPS system and inertial measurement unit both work to determine where the camera is and what angle the vehicle and camera are at when these pictures are taken. The computer will store this data or transmit it back to a larger and more powerful server.

A computer. This data will then need to be processed by advanced software to create useful information. Photogrammetry usually requires much more data analysis and detailed maps. Photogrammetry can often take five times as long to create when compared to LiDAR data post production times.

What is Photogrammetry Used For?

Photogrammetry is used to create maps, drawings, and 3D models. Engineers, land surveyors, real estate firms, and many other businesses have found ways to use photogrammetry.

An engineer might, for example, use photogrammetry to help them plan a highway, a railroad, or even a dam. Before starting a new development project, a real estate firm could use photogrammetry to survey a particular piece of land.

Another example would be the use of photogrammetry to create accurate aerial views of pipelines for natural gas. They could then use this data to help keep the gas lines free from growing vegetation or inspect potential landslide hazards.

Advantages of LiDAR vs. photogrammetry

Advantages of LiDAR

Advantages of photogrammetry

Extremely accurate when it comes to surveying an area, especially when collecting data from the ground. Can create full-color 2D and 3D models, whereas LiDAR can only capture data in monochrome.
Captures more data, faster than photogrammetry. When taken from UAVs or other aerial vehicles, photogrammetry systems can often create models more accurately.
Data can be captured in low-light settings, including completely dark environments. This accuracy can also be achieved at a much lower price point. The laser source and detector, timing electronics, mirror, and motor are all more expensive for LiDAR than photogrammetry technology, according to
Data can be processed faster into usable information and maps than photogrammetry. According to, the raw data from LiDAR can be processed in just a few minutes. Comparatively, photogrammetry can take five to ten times longer. Equipment for photogrammetry is lighter than LiDAR. This means a lighter UAV can be used. A larger UAV might need a more experienced operator to fly.

When to Use LiDAR Over Photogrammetry

LiDAR excels in low-light environments and in creating astonishingly precise models. It’s also great to quickly collect and interpret data. This makes it ideal for projects where specific timelines need to be met.

A situation in which one might want to select LiDAR over photogrammetry is in high vegetation survey areas. This is because the vegetation will create shadows and obscure the ground, making it more challenging to collect accurate data using photogrammetry.

An example of this could be the U.S. Forestry Service using LiDAR to monitor a state forest section’s health. In industry, it could be a company using LiDAR to help autonomous vehicles navigate a highway at night.

When to Use Photogrammetry Over LiDAR

Photogrammetry can create full – color maps with images that are much more detailed than those created by using LiDAR. Often at lower prices.

In industry, a mining company may want to use photogrammetry to show the elevation and terrain around a mine or transport route, such as a pipeline or railroad. This information might help prevent natural disasters like floods and landslides.

A government agency may want to create topographic maps that can be used to help with rescue operations. For example, a drone might be sent to an area that is experiencing wildfires. Photogrammetry could be used to map areas that are currently fire-affected to help rescue crews evacuate surrounding areas.

This is not the only area where the government could use photogrammetry. One surprising way in which it is currently being used is in crime scene investigation. They use photogrammetry to quickly create a record of the crime scene so that it can quickly be cleaned up before the investigation is complete. This has become especially helpful in traffic collisions as roads can be reopened without any delays from crime scene investigators.

Final Thoughts

LiDAR and photogrammetry both use some of the same vehicles to collect their data. With the data they collect, they can also create some of the same resources.

These technologies, however, are both very different, and they both have strengths and weaknesses that complement each other. Sometimes using LiDAR data will be more beneficial than using photogrammetry, while other times the reverse will be true. In other cases, you might want to collect data using both of these technologies.

SolSpec uses LiDAR and photogrammetric units mounted to UAVs to inspect gas and oil pipeline pathways. Our fast data gathering and turnaround, as well as the latest in LiDAR and Photogrammetric technologies, facilitate regulatory compliance and environmental safety.